3kwa

From Proteopedia

Jump to: navigation, search
3kwa, resolution 2.00Å ()
Ligands: , ,
Activity: Carbonate dehydratase, with EC number 4.2.1.1


Resources: FirstGlance, OCA, RCSB, PDBsum
Coordinates: save as pdb, mmCIF, xml


Contents

Polyamines inhibit carbonic anhydrases

Publication Abstract from PubMed

Carbonic anhydrases (CAs, EC 4.2.1.1) are inhibited by sulfonamides, phenols, and coumarins. Polyamines such as spermine, spermidine, and many synthetic congeners are described to constitute a novel class of CA inhibitors (CAIs), interacting with the different CA isozymes with efficiency from the low nanomolar to millimolar range. The main structure-activity relationship for these CAIs have been delineated: the length of the molecule, number of amine moieties, and their functionalization are the main parameters controlling activity. The X-ray crystal structure of the CA II-spermine adduct allowed understanding of the inhibition mechanism. Spermine anchors to the nonprotein zinc ligand through a network of hydrogen bonds. Its distal amine moiety makes hydrogen bonds with residues Thr200 and Pro201, which further stabilize the adduct. Spermine binds differently compared to sulfonamides, phenols, or coumarins, rendering possible to develop CAIs with a diverse inhibition mechanism, profile, and selectivity for various isoforms.

Polyamines Inhibit Carbonic Anhydrases by Anchoring to the Zinc-Coordinated Water Molecule., Carta F, Temperini C, Innocenti A, Scozzafava A, Kaila K, Supuran CT, J Med Chem. 2010 Jun 30. PMID:20590092

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Disease

[CAH2_HUMAN] Defects in CA2 are the cause of osteopetrosis autosomal recessive type 3 (OPTB3) [MIM:259730]; also known as osteopetrosis with renal tubular acidosis, carbonic anhydrase II deficiency syndrome, Guibaud-Vainsel syndrome or marble brain disease. Osteopetrosis is a rare genetic disease characterized by abnormally dense bone, due to defective resorption of immature bone. The disorder occurs in two forms: a severe autosomal recessive form occurring in utero, infancy, or childhood, and a benign autosomal dominant form occurring in adolescence or adulthood. Autosomal recessive osteopetrosis is usually associated with normal or elevated amount of non-functional osteoclasts. OPTB3 is associated with renal tubular acidosis, cerebral calcification (marble brain disease) and in some cases with mental retardation.[1][2][3][4][5]

Function

[CAH2_HUMAN] Essential for bone resorption and osteoclast differentiation (By similarity). Reversible hydration of carbon dioxide. Can hydrate cyanamide to urea. Involved in the regulation of fluid secretion into the anterior chamber of the eye.[6][7]

About this Structure

3kwa is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA.

See Also

Reference

  • Carta F, Temperini C, Innocenti A, Scozzafava A, Kaila K, Supuran CT. Polyamines Inhibit Carbonic Anhydrases by Anchoring to the Zinc-Coordinated Water Molecule. J Med Chem. 2010 Jun 30. PMID:20590092 doi:10.1021/jm1003667
  1. Venta PJ, Welty RJ, Johnson TM, Sly WS, Tashian RE. Carbonic anhydrase II deficiency syndrome in a Belgian family is caused by a point mutation at an invariant histidine residue (107 His----Tyr): complete structure of the normal human CA II gene. Am J Hum Genet. 1991 Nov;49(5):1082-90. PMID:1928091
  2. Roth DE, Venta PJ, Tashian RE, Sly WS. Molecular basis of human carbonic anhydrase II deficiency. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1804-8. PMID:1542674
  3. Soda H, Yukizane S, Yoshida I, Koga Y, Aramaki S, Kato H. A point mutation in exon 3 (His 107-->Tyr) in two unrelated Japanese patients with carbonic anhydrase II deficiency with central nervous system involvement. Hum Genet. 1996 Apr;97(4):435-7. PMID:8834238
  4. Hu PY, Lim EJ, Ciccolella J, Strisciuglio P, Sly WS. Seven novel mutations in carbonic anhydrase II deficiency syndrome identified by SSCP and direct sequencing analysis. Hum Mutat. 1997;9(5):383-7. PMID:9143915 doi:<383::AID-HUMU1>3.0.CO;2-5 10.1002/(SICI)1098-1004(1997)9:5<383::AID-HUMU1>3.0.CO;2-5
  5. Shah GN, Bonapace G, Hu PY, Strisciuglio P, Sly WS. Carbonic anhydrase II deficiency syndrome (osteopetrosis with renal tubular acidosis and brain calcification): novel mutations in CA2 identified by direct sequencing expand the opportunity for genotype-phenotype correlation. Hum Mutat. 2004 Sep;24(3):272. PMID:15300855 doi:10.1002/humu.9266
  6. Briganti F, Mangani S, Scozzafava A, Vernaglione G, Supuran CT. Carbonic anhydrase catalyzes cyanamide hydration to urea: is it mimicking the physiological reaction? J Biol Inorg Chem. 1999 Oct;4(5):528-36. PMID:10550681
  7. Kim CY, Whittington DA, Chang JS, Liao J, May JA, Christianson DW. Structural aspects of isozyme selectivity in the binding of inhibitors to carbonic anhydrases II and IV. J Med Chem. 2002 Feb 14;45(4):888-93. PMID:11831900

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools