First time at Proteopedia? Click on the green links: they change the 3D image. Click and drag the molecules. Proteopedia is a 3D, interactive encyclopedia of proteins, RNA, DNA and other molecules. With a free user account, you can edit pages in Proteopedia. Visit the Main Page to learn more.

2aw1

From Proteopedia

Jump to: navigation, search
2aw1, resolution 1.46Å ()
Ligands: , , ,
Activity: Carbonate dehydratase, with EC number 4.2.1.1
Related: 1ca2, 1oq5
Resources: FirstGlance, OCA, RCSB, PDBsum
Coordinates: save as pdb, mmCIF, xml


Contents

Carbonic anhydrase inhibitors: Valdecoxib binds to a different active site region of the human isoform II as compared to the structurally related cyclooxygenase II "selective" inhibitor Celecoxib

Publication Abstract from PubMed

The high resolution X-ray crystal structure of the adduct of human carbonic anhydrase (CA, EC 4.2.1.1) isoform II (hCA II) with the clinically used painkiller valdecoxib, acting as a potent CA II and cyclooxygenase-2 (COX-2) inhibitor, is reported. The ionized sulfonamide moiety of valdecoxib is coordinated to the catalytic Zn(II) ion with a tetrahedral geometry. The phenyl-isoxazole moiety of the inhibitor fills the active site channel and interacts with the side chains of Gln92, Val121, Leu198, Thr200, and Pro202. Its 3-phenyl group is located into a hydrophobic pocket, simultaneously establishing van der Waals interactions with the aliphatic side chain of various hydrophobic residues (Val135, Ile91, Val121, Leu198, and Leu141) and a strong offset face-to-face stacking interaction with the aromatic ring of Phe131 (the chi1 angle of which is rotated about 90 degrees with respect to what was observed in the structure of the native enzyme and those of other sulfonamide complexes). Celecoxib, a structurally related COX-2 inhibitor for which the X-ray crystal structure was reported earlier, binds in a completely different manner to hCA II as compared to valdecoxib. Celecoxib completely fills the entire CA II active site, with its trifluoromethyl group in the hydrophobic part of the active site and the p-tolyl moiety in the hydrophilic one, not establishing any interaction with Phe131. In contrast to celecoxib, valdecoxib was rotated about 90 degrees around the chemical bond connecting the benzensulfonamide and the substituted isoxazole ring allowing for these multiple favorable interactions. These different binding modes allow for the further drug design of various CA inhibitors belonging to the benzenesulfonamide class.

Carbonic anhydrase inhibitors: Valdecoxib binds to a different active site region of the human isoform II as compared to the structurally related cyclooxygenase II "selective" inhibitor celecoxib., Di Fiore A, Pedone C, D'Ambrosio K, Scozzafava A, De Simone G, Supuran CT, Bioorg Med Chem Lett. 2006 Jan 15;16(2):437-42. Epub 2005 Nov 14. PMID:16290146

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Disease

[CAH2_HUMAN] Defects in CA2 are the cause of osteopetrosis autosomal recessive type 3 (OPTB3) [MIM:259730]; also known as osteopetrosis with renal tubular acidosis, carbonic anhydrase II deficiency syndrome, Guibaud-Vainsel syndrome or marble brain disease. Osteopetrosis is a rare genetic disease characterized by abnormally dense bone, due to defective resorption of immature bone. The disorder occurs in two forms: a severe autosomal recessive form occurring in utero, infancy, or childhood, and a benign autosomal dominant form occurring in adolescence or adulthood. Autosomal recessive osteopetrosis is usually associated with normal or elevated amount of non-functional osteoclasts. OPTB3 is associated with renal tubular acidosis, cerebral calcification (marble brain disease) and in some cases with mental retardation.[1][2][3][4][5]

Function

[CAH2_HUMAN] Essential for bone resorption and osteoclast differentiation (By similarity). Reversible hydration of carbon dioxide. Can hydrate cyanamide to urea. Involved in the regulation of fluid secretion into the anterior chamber of the eye.[6][7]

About this Structure

2aw1 is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA.

See Also

Reference

  • Di Fiore A, Pedone C, D'Ambrosio K, Scozzafava A, De Simone G, Supuran CT. Carbonic anhydrase inhibitors: Valdecoxib binds to a different active site region of the human isoform II as compared to the structurally related cyclooxygenase II "selective" inhibitor celecoxib. Bioorg Med Chem Lett. 2006 Jan 15;16(2):437-42. Epub 2005 Nov 14. PMID:16290146 doi:10.1016/j.bmcl.2005.09.040
  1. Venta PJ, Welty RJ, Johnson TM, Sly WS, Tashian RE. Carbonic anhydrase II deficiency syndrome in a Belgian family is caused by a point mutation at an invariant histidine residue (107 His----Tyr): complete structure of the normal human CA II gene. Am J Hum Genet. 1991 Nov;49(5):1082-90. PMID:1928091
  2. Roth DE, Venta PJ, Tashian RE, Sly WS. Molecular basis of human carbonic anhydrase II deficiency. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1804-8. PMID:1542674
  3. Soda H, Yukizane S, Yoshida I, Koga Y, Aramaki S, Kato H. A point mutation in exon 3 (His 107-->Tyr) in two unrelated Japanese patients with carbonic anhydrase II deficiency with central nervous system involvement. Hum Genet. 1996 Apr;97(4):435-7. PMID:8834238
  4. Hu PY, Lim EJ, Ciccolella J, Strisciuglio P, Sly WS. Seven novel mutations in carbonic anhydrase II deficiency syndrome identified by SSCP and direct sequencing analysis. Hum Mutat. 1997;9(5):383-7. PMID:9143915 doi:<383::AID-HUMU1>3.0.CO;2-5 10.1002/(SICI)1098-1004(1997)9:5<383::AID-HUMU1>3.0.CO;2-5
  5. Shah GN, Bonapace G, Hu PY, Strisciuglio P, Sly WS. Carbonic anhydrase II deficiency syndrome (osteopetrosis with renal tubular acidosis and brain calcification): novel mutations in CA2 identified by direct sequencing expand the opportunity for genotype-phenotype correlation. Hum Mutat. 2004 Sep;24(3):272. PMID:15300855 doi:10.1002/humu.9266
  6. Briganti F, Mangani S, Scozzafava A, Vernaglione G, Supuran CT. Carbonic anhydrase catalyzes cyanamide hydration to urea: is it mimicking the physiological reaction? J Biol Inorg Chem. 1999 Oct;4(5):528-36. PMID:10550681
  7. Kim CY, Whittington DA, Chang JS, Liao J, May JA, Christianson DW. Structural aspects of isozyme selectivity in the binding of inhibitors to carbonic anhydrases II and IV. J Med Chem. 2002 Feb 14;45(4):888-93. PMID:11831900

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools