First time at Proteopedia? Click on the green links: they change the 3D image. Click and drag the molecules. Proteopedia is a 3D, interactive encyclopedia of proteins, RNA, DNA and other molecules. With a free user account, you can edit pages in Proteopedia. Visit the Main Page to learn more.

1bga

From Proteopedia

Jump to: navigation, search


1bga, resolution 2.40Å ()
Gene: BGLA (Paenibacillus polymyxa)
Activity: Beta-glucosidase, with EC number 3.2.1.21
Resources: FirstGlance, OCA, PDBsum, RCSB
Coordinates: save as pdb, mmCIF, xml



Contents

BETA-GLUCOSIDASE A FROM BACILLUS POLYMYXA

Publication Abstract from PubMed

Family 1 glycosyl hydrolases are a very relevant group of enzymes because of the diversity of biological roles in which they are involved, and their generalized occurrence in all sorts of living organisms. The biological plasticity of these enzymes is a consequence of the variety of beta-glycosidic substrates that they can hydrolyze: disaccharides such as cellobiose and lactose, phosphorylated disaccharides, cyanogenic glycosides, etc. The crystal structure of BglA, a member of the family, has been determined in the native state and complexed with gluconate ligand, at 2.4 A and 2.3 A resolution, respectively. The subunits of the octameric enzyme display the (alpha/beta)8 barrel structural fold previously reported for other family 1 enzymes. However, significant structural differences have been encountered in the loops surrounding the active-center cavity. These differences make a wide and extended cavity in BglA, which seems to be able to accommodate substrates longer than cellobiose, its natural substrate. Furthermore, a third sub-site is encountered, which might have some connection with the transglycosylating activity associated to this enzyme and its certain activity against beta-1,4 oligosaccharides composed of more than two units of glucose. The particular geometry of the cavity which contains the active center of BglA must therefore account for both, hydrolytic and transglycosylating activities. A potent and well known inhibitor of different glycosidases, D-glucono-1,5-lactone, was used in an attempt to define interactions of the substrate with specific protein residues. Although the lactone has transformed into gluconate under crystallizing conditions, the open species still binds the enzyme, the conformation of its chain mimicking the true inhibitor. From the analysis of the enzyme-ligand hydrogen bonding interactions, a detailed picture of the active center can be drawn, for a family 1 enzyme. In this way, Gln20, His121, Tyr296, Glu405 and Trp406 are identified as determinant residues in the recognition of the substrate. In particular, two bidentate hydrogen bonds made by Gln20 and Glu405, could conform the structural explanation for the ability of most members of the family for displaying both, glucosidase and galactosidase activity.

Crystal structure of beta-glucosidase A from Bacillus polymyxa: insights into the catalytic activity in family 1 glycosyl hydrolases., Sanz-Aparicio J, Hermoso JA, Martinez-Ripoll M, Lequerica JL, Polaina J, J Mol Biol. 1998 Jan 23;275(3):491-502. PMID:9466926

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

About this Structure

1bga is a 4 chain structure with sequence from Paenibacillus polymyxa. Full crystallographic information is available from OCA.

See Also

Reference

  • Sanz-Aparicio J, Hermoso JA, Martinez-Ripoll M, Lequerica JL, Polaina J. Crystal structure of beta-glucosidase A from Bacillus polymyxa: insights into the catalytic activity in family 1 glycosyl hydrolases. J Mol Biol. 1998 Jan 23;275(3):491-502. PMID:9466926 doi:http://dx.doi.org/10.1006/jmbi.1997.1467

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools