First time at Proteopedia? Click on the green links: they change the 3D image. Click and drag the molecules. Proteopedia is a 3D, interactive encyclopedia of proteins, RNA, DNA and other molecules. With a free user account, you can edit pages in Proteopedia. Visit the Main Page to learn more.

1ydd

From Proteopedia

Jump to: navigation, search
1ydd, resolution 2.10Å ()
Ligands: , ,
Activity: Carbonate dehydratase, with EC number 4.2.1.1
Resources: FirstGlance, OCA, RCSB, PDBsum
Coordinates: save as pdb, mmCIF, xml


Contents

STRUCTURAL BASIS OF INHIBITOR AFFINITY TO VARIANTS OF HUMAN CARBONIC ANHYDRASE II

Publication Abstract from PubMed

The activities and structures of certain L198 variants of human carbonic anhydrase II (CAII) have been reported recently [Krebs, J. F., Rana, F., Dluhy, R. A., & Fierke, C. A. (1993) Biochemistry 32, 4496-4505; Nair, S. K., & Christianson, D. W. (1993) Biochemistry 32, 4506-4514]. In order to understand the structural basis of enzyme-inhibitor affinity, we now report the dissociation rate and equilibrium constants for acetazolamide and dansylamide binding to 13 variants of CAII containing substituted amino acids at position 198. These data indicate that inhibitor affinity is modulated by the hydrophobicity and charge of the 198 side chain. Furthermore, we have determined crystal structures of L198R, L198E, and L198F CAIIs complexed with the transition state analog acetazolamide. The substituted benzyl side chain of L198F CAII does not occlude the substrate association pocket, and it is therefore not surprising that this substitution has minimal effects on catalytic properties and inhibitor binding. Nevertheless, the F198 side chain undergoes a significant conformation change in order to accommodate the binding of acetazolamide; the same behavior is observed for the engineered side chain of L198R CAII. In contrast, the engineered side chain of L198E CAII does not alter its conformation upon inhibitor binding. We conclude that the mobility and hydrophobicity or residue 198 side chains affect enzyme-inhibitor (and enzyme-substrate) affinity, and these structure-function relationships are important for understanding the behavior of carbonic anhydrase isozyme III, which bears a wild-type F198 side chain.(ABSTRACT TRUNCATED AT 250 WORDS)

Structural basis of inhibitor affinity to variants of human carbonic anhydrase II., Nair SK, Krebs JF, Christianson DW, Fierke CA, Biochemistry. 1995 Mar 28;34(12):3981-9. PMID:7696263

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Disease

[CAH2_HUMAN] Defects in CA2 are the cause of osteopetrosis autosomal recessive type 3 (OPTB3) [MIM:259730]; also known as osteopetrosis with renal tubular acidosis, carbonic anhydrase II deficiency syndrome, Guibaud-Vainsel syndrome or marble brain disease. Osteopetrosis is a rare genetic disease characterized by abnormally dense bone, due to defective resorption of immature bone. The disorder occurs in two forms: a severe autosomal recessive form occurring in utero, infancy, or childhood, and a benign autosomal dominant form occurring in adolescence or adulthood. Autosomal recessive osteopetrosis is usually associated with normal or elevated amount of non-functional osteoclasts. OPTB3 is associated with renal tubular acidosis, cerebral calcification (marble brain disease) and in some cases with mental retardation.[1][2][3][4][5]

Function

[CAH2_HUMAN] Essential for bone resorption and osteoclast differentiation (By similarity). Reversible hydration of carbon dioxide. Can hydrate cyanamide to urea. Involved in the regulation of fluid secretion into the anterior chamber of the eye.[6][7]

About this Structure

1ydd is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA.

See Also

Reference

  • Nair SK, Krebs JF, Christianson DW, Fierke CA. Structural basis of inhibitor affinity to variants of human carbonic anhydrase II. Biochemistry. 1995 Mar 28;34(12):3981-9. PMID:7696263
  1. Venta PJ, Welty RJ, Johnson TM, Sly WS, Tashian RE. Carbonic anhydrase II deficiency syndrome in a Belgian family is caused by a point mutation at an invariant histidine residue (107 His----Tyr): complete structure of the normal human CA II gene. Am J Hum Genet. 1991 Nov;49(5):1082-90. PMID:1928091
  2. Roth DE, Venta PJ, Tashian RE, Sly WS. Molecular basis of human carbonic anhydrase II deficiency. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1804-8. PMID:1542674
  3. Soda H, Yukizane S, Yoshida I, Koga Y, Aramaki S, Kato H. A point mutation in exon 3 (His 107-->Tyr) in two unrelated Japanese patients with carbonic anhydrase II deficiency with central nervous system involvement. Hum Genet. 1996 Apr;97(4):435-7. PMID:8834238
  4. Hu PY, Lim EJ, Ciccolella J, Strisciuglio P, Sly WS. Seven novel mutations in carbonic anhydrase II deficiency syndrome identified by SSCP and direct sequencing analysis. Hum Mutat. 1997;9(5):383-7. PMID:9143915 doi:<383::AID-HUMU1>3.0.CO;2-5 10.1002/(SICI)1098-1004(1997)9:5<383::AID-HUMU1>3.0.CO;2-5
  5. Shah GN, Bonapace G, Hu PY, Strisciuglio P, Sly WS. Carbonic anhydrase II deficiency syndrome (osteopetrosis with renal tubular acidosis and brain calcification): novel mutations in CA2 identified by direct sequencing expand the opportunity for genotype-phenotype correlation. Hum Mutat. 2004 Sep;24(3):272. PMID:15300855 doi:10.1002/humu.9266
  6. Briganti F, Mangani S, Scozzafava A, Vernaglione G, Supuran CT. Carbonic anhydrase catalyzes cyanamide hydration to urea: is it mimicking the physiological reaction? J Biol Inorg Chem. 1999 Oct;4(5):528-36. PMID:10550681
  7. Kim CY, Whittington DA, Chang JS, Liao J, May JA, Christianson DW. Structural aspects of isozyme selectivity in the binding of inhibitors to carbonic anhydrases II and IV. J Med Chem. 2002 Feb 14;45(4):888-93. PMID:11831900

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools