First time at Proteopedia? Click on the green links: they change the 3D image. Click and drag the molecules. Proteopedia is a 3D, interactive encyclopedia of proteins, RNA, DNA and other molecules. With a free user account, you can edit pages in Proteopedia. Visit the Main Page to learn more.

1o04

From Proteopedia

Jump to: navigation, search


1o04, resolution 1.42Å ()
Ligands: , , , ,
Gene: ALDH2 OR ALDM (Homo sapiens)
Activity: Aldehyde dehydrogenase (NAD(+)), with EC number 1.2.1.3
Related: 1cw3, 1ag8, 1a4z, 1nzw, 1nzx, 1nzz, 1o00, 1o01, 1o02, 1o05
Resources: FirstGlance, OCA, PDBsum, RCSB
Coordinates: save as pdb, mmCIF, xml



Contents

Cys302Ser mutant of human mitochondrial aldehyde dehydrogenase complexed with NAD+ and Mg2+

Publication Abstract from PubMed

Crystal structures of many enzymes in the aldehyde dehydrogenase superfamily determined in the presence of bound NAD(P)(+) have exhibited conformational flexibility for the nicotinamide half of the cofactor. This has been hypothesized to be important in catalysis because one conformation would block the second half of the reaction, but no firm evidence has been put forth which shows whether the oxidized and reduced cofactors preferentially occupy the two observed conformations. We present here two structures of the wild type and two structures of a Cys302Ser mutant of human mitochondrial aldehyde dehydrogenase in binary complexes with NAD(+) and NADH. These structures, including the Cys302Ser mutant in complex with NAD(+) at 1.4 A resolution and the wild-type enzyme in complex with NADH at 1.9 A resolution, provide strong evidence that bound NAD(+) prefers an extended conformation ideal for hydride transfer and bound NADH prefers a contracted conformation ideal for acyl-enzyme hydrolysis. Unique interactions between the cofactor and the Rossmann fold make isomerization possible while allowing the remainder of the active site complex to remain intact. In addition, these structures clarify the role of magnesium in activating the human class 2 enzyme. Our data suggest that the presence of magnesium may lead to selection of particular conformations and speed isomerization of the reduced cofactor following hydride transfer.

Coenzyme isomerization is integral to catalysis in aldehyde dehydrogenase., Perez-Miller SJ, Hurley TD, Biochemistry. 2003 Jun 17;42(23):7100-9. PMID:12795606

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

About this Structure

1o04 is a 8 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA.

See Also

Reference

  • Perez-Miller SJ, Hurley TD. Coenzyme isomerization is integral to catalysis in aldehyde dehydrogenase. Biochemistry. 2003 Jun 17;42(23):7100-9. PMID:12795606 doi:10.1021/bi034182w

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools