From Proteopedia

Jump to: navigation, search
1hva, resolution 2.30Å ()
Activity: Carbonate dehydratase, with EC number
Resources: FirstGlance, OCA, RCSB, PDBsum
Coordinates: save as pdb, mmCIF, xml



Publication Abstract from PubMed

The structure of the His-94-->Cys variant of human carbonic anhydrase II (CAII) has been determined by X-ray crystallographic methods to a resolution of 2.3 A with a final crystallographic R factor of 0.155. This variant of CAII crystallizes in orthorhombic space group P2(1)2(1)2(1) which is the first example of a new crystal form for this important zinc hydrase (the wild-type enzyme crystallizes in monoclinic space group P21 under similar crystallization conditions). Although the overall structure of the enzyme in the orthorhombic crystal form is similar to that of the wild-type protein in the monoclinic crystal form, the rms deviation of C alpha atoms between the two structures is 0.5 A. Larger structural deviations occur in regions of the protein molecule involved in crystal lattice contacts, and significant structural changes are found in the polypeptide strand containing Cys-94. Surprisingly, no electron density corresponding to a zinc ion is found in the active site of crystalline His-94-->Cys CAII, even though the stoichiometry of zinc binding to this variant in solution is confirmed by atomic absorption spectroscopy. However, the KD for zinc dissociation from the variant is increased 10(4)-fold compared with wild-type enzyme; furthermore, under the crystallization conditions of high ionic strength (1.75-2.5 M ammonium sulfate), the observed KD is increased further, which leads to zinc dissociation. Spectroscopic analysis of Co(2+)-substituted His-94-->Cys CAII indicates that the metal binds in a tetrahedral geometry with a new thiolate bond.(ABSTRACT TRUNCATED AT 250 WORDS)

Engineering the zinc binding site of human carbonic anhydrase II: structure of the His-94-->Cys apoenzyme in a new crystalline form., Alexander RS, Kiefer LL, Fierke CA, Christianson DW, Biochemistry. 1993 Feb 16;32(6):1510-8. PMID:8431430

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.


[CAH2_HUMAN] Defects in CA2 are the cause of osteopetrosis autosomal recessive type 3 (OPTB3) [MIM:259730]; also known as osteopetrosis with renal tubular acidosis, carbonic anhydrase II deficiency syndrome, Guibaud-Vainsel syndrome or marble brain disease. Osteopetrosis is a rare genetic disease characterized by abnormally dense bone, due to defective resorption of immature bone. The disorder occurs in two forms: a severe autosomal recessive form occurring in utero, infancy, or childhood, and a benign autosomal dominant form occurring in adolescence or adulthood. Autosomal recessive osteopetrosis is usually associated with normal or elevated amount of non-functional osteoclasts. OPTB3 is associated with renal tubular acidosis, cerebral calcification (marble brain disease) and in some cases with mental retardation.[1][2][3][4][5]


[CAH2_HUMAN] Essential for bone resorption and osteoclast differentiation (By similarity). Reversible hydration of carbon dioxide. Can hydrate cyanamide to urea. Involved in the regulation of fluid secretion into the anterior chamber of the eye.[6][7]

About this Structure

1hva is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA.

See Also


  • Alexander RS, Kiefer LL, Fierke CA, Christianson DW. Engineering the zinc binding site of human carbonic anhydrase II: structure of the His-94-->Cys apoenzyme in a new crystalline form. Biochemistry. 1993 Feb 16;32(6):1510-8. PMID:8431430
  1. Venta PJ, Welty RJ, Johnson TM, Sly WS, Tashian RE. Carbonic anhydrase II deficiency syndrome in a Belgian family is caused by a point mutation at an invariant histidine residue (107 His----Tyr): complete structure of the normal human CA II gene. Am J Hum Genet. 1991 Nov;49(5):1082-90. PMID:1928091
  2. Roth DE, Venta PJ, Tashian RE, Sly WS. Molecular basis of human carbonic anhydrase II deficiency. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1804-8. PMID:1542674
  3. Soda H, Yukizane S, Yoshida I, Koga Y, Aramaki S, Kato H. A point mutation in exon 3 (His 107-->Tyr) in two unrelated Japanese patients with carbonic anhydrase II deficiency with central nervous system involvement. Hum Genet. 1996 Apr;97(4):435-7. PMID:8834238
  4. Hu PY, Lim EJ, Ciccolella J, Strisciuglio P, Sly WS. Seven novel mutations in carbonic anhydrase II deficiency syndrome identified by SSCP and direct sequencing analysis. Hum Mutat. 1997;9(5):383-7. PMID:9143915 doi:<383::AID-HUMU1>3.0.CO;2-5 10.1002/(SICI)1098-1004(1997)9:5<383::AID-HUMU1>3.0.CO;2-5
  5. Shah GN, Bonapace G, Hu PY, Strisciuglio P, Sly WS. Carbonic anhydrase II deficiency syndrome (osteopetrosis with renal tubular acidosis and brain calcification): novel mutations in CA2 identified by direct sequencing expand the opportunity for genotype-phenotype correlation. Hum Mutat. 2004 Sep;24(3):272. PMID:15300855 doi:10.1002/humu.9266
  6. Briganti F, Mangani S, Scozzafava A, Vernaglione G, Supuran CT. Carbonic anhydrase catalyzes cyanamide hydration to urea: is it mimicking the physiological reaction? J Biol Inorg Chem. 1999 Oct;4(5):528-36. PMID:10550681
  7. Kim CY, Whittington DA, Chang JS, Liao J, May JA, Christianson DW. Structural aspects of isozyme selectivity in the binding of inhibitors to carbonic anhydrases II and IV. J Med Chem. 2002 Feb 14;45(4):888-93. PMID:11831900

Proteopedia Page Contributors and Editors (what is this?)


Personal tools